Muscle Edema - Recognizing Patterns and Associated Causes

Hierl MS, MD, Yadavalli S, MD, PhD and Marcantonio D, MD

Beaumont Health, Royal Oak, MI

Oakland University William Beaumont School of Medicine, MI

Beaumont Health

Beaumont + Botsford + Oakwood

Disclosures

The authors do not have a financial relationship with a commercial organization that may have a direct or indirect interest in the content.

Goals and Objectives

- Educational review of muscle edema patterns and distribution
 - Emphasis on findings seen on magnetic resonance imaging (MRI)
- Correlate muscle edema patterns with relevant clinical history
 - Clinical data often helps in narrowing a differential or in making an accurate diagnosis
- Discuss relevance of other imaging modalities and usefulness of intravenous contrast

Introduction

- Muscle edema is seen secondary to multiple etiologies including trauma, infectious and inflammatory processes, autoimmune disorders, neoplasms, and denervation injuries
- On MRI muscle edema is characterized by increase in free water within the muscle
- Muscle edema is seen on MRI as increased signal on fluid sensitive sequences

T2 FS

Higher signal to noise ratio

Specific fat suppression

Susceptible to inhomogeneous fat suppression

STIR

Lower signal-to-noise ratio

Homogenous fat suppression

- T1 weighted images useful for evaluating
 - Fatty atrophy of muscle
 - Subacute hemorrhage in presence of methemoglobin
- Contrast useful for evaluating for underlying infarction, tumor or abscess

Causes of Muscle Edema

- Trauma
 - Strain
 - Contusion
 - Laceration
- Denervation
- Rhabdomyolysis
- Delayed onset muscle soreness
- Infection
 - Pyomyositis
 - Necrotizing fasciitis
 - Viral myositis

- Inflammatory myopathies
 - Dermatomyositis
 - Polymyositis
 - Connective tissue disorders
- Primary or metastatic tumor
- Radiation induced
- Medication related myopathy
- Vascular
 - Myonecrosis
 - Diabetic muscle infarction

Muscle Strain

٠

- Muscle strain injuries at the myotendinous junction
 - caused by forceful muscle contraction
- Most common in muscles that cross two joints
 - contain fast-twitch fibers and contract during elongation
- Muscle strain immediately painful
- More gradual development of pain with Delayed Onset Muscle Soreness
- A-B: Tear of the rectus femoris tendon centered along myotendinous junction
- C-D: Complete rupture of myotendinous junction of infraspinatus with extensive associated muscle edema

Muscle Contusion with Ischemia/Necrosis

- Muscle contusion results from direct injury, usually following blunt trauma
- Note feathery pattern of muscle edema and enhancement (ellipses) in patient with history of recent fall
 - also note adjacent subcutaneous edema (*)
- Areas of non enhancement (arrows) suggestive of underlying ischemia/necrosis

Denervation

• First few days

- imaging studies are often normal
- Late acute stage
 - Earliest sign is increased signal in muscle on T2 weighted images
- Subacute stage
 - Progressive muscle atrophy but muscle edema may still persist
- Chronic stage
 - Muscle atrophy dominant finding fatty infiltration
- Affected muscles will follow the distribution supplied by the affected nerve
- Potential mechanisms of denervation
 - Spinal cord injury, poliomyelitis, peripheral nerve injury or compression
- MR imaging may identify a correctable cause of nerve compression such as a prominent osteophyte or ganglion cyst

Suprascapular Nerve Entrapment

A-B: Note paralabral cyst (arrows) extending to spinoglenoid notch and resulting infraspinatus muscle edema (ellipse)

- Suprascapular nerve compressed at:
 - Suprascapular notch affects supraspinatus and infraspinatus muscles
 - Spinoglenoid notch affects only infraspinatus muscle
- Patients present with non-specific posterior shoulder pain and weakness
- Causes include masses (paralabral or ganglion cysts), traction injury or trauma

Anterior Interosseous Nerve Syndrome

Anterior interosseous nerve

- Arises from the median nerve
- Pure motor nerve
- Supplies radial half of flexor digitorum profundus, flexor pollicis longus and pronator quadratus muscles
- Pronation weakness
- Pinching deformity due to weakness in thumb and index finger
- Edema and atrophy of the muscles
- Edema in pronator quadratus muscle (ellipse)
 - most reliable sign

Ischiofemoral Impingement

- Impingement of soft tissues between the ischial tuberosity and lesser trochanter
- May present with hip pain
- Middle age to elderly females
- Bilateral 25-40%
- Narrowed ischiofemoral space <15 mm and quadratus femoris space <10 mm
- Muscle edema within the quadratus femoris
 muscle (ellipses)

Delayed Onset Muscle Soreness

- Clinical syndrome with gradual muscle pain
- May take hours to days following strenuous exercise to develop symptoms
- Associated with exercise involving eccentric muscle contraction
- Edema signal on MRI of the involved muscle groups
- Elevated creatinine kinase (CK) levels
- Signal intensity correlates with serum CK levels

A-C:

Note extensive muscle edema (*) in patient who presented with severe pain and elevated CK levels 3 days after a 2 hour strenuous upper body work out

Pyomyositis

- Bacterial muscle infection
 - most commonly by *Staph Aureus*
- Many patients have underlying systemic illness causing immunosuppression
- Generally involves a single muscle group
- May be multifocal
- Abscess rim enhancing fluid collection (circle) within areas of muscle edema and enhancement

Parsonage Turner Syndrome

- Acute idiopathic brachial neuritis
- Sudden onset of shoulder pain and/or weakness of shoulder girdle musculature
- Exact etiology uncertain
 - viral or autoimmune process suspected
- Supraspinatus and infraspinatus muscles frequently involved followed by the deltoid muscle
- Prolonged course can lead to muscle atrophy
- A-B: Note muscle edema (*) in the supraspinatus and infraspinatus muscles and to a lesser extent in the lateral aspect of deltoid muscle

Polymyositis and Dermatomyositis

- Autoimmune inflammatory conditions
- Gradual onset of muscle weakness affecting
 proximal pelvic girdle
- Later involves proximal muscles of upper limbs
- Degree of muscle edema correlates with disease activity
 - can direct muscle biopsy
- Polymyositis only involves skeletal muscle
- Dermatomyositis also involves the skin
- Adult onset dermatomyositis associated with increased prevalence of malignancy
- Sheet-like calcifications may develop in dermatomyositis
- A-B: Note diffuse muscle and subcutaneous edema in upper extremity of patient with dermatomyositis

Sarcoidosis

- Uncommon
- Myopathic or nodular types
- Myopathic type
 - Symmetric proximal muscle atrophy
 - Increased signal intensity of involved muscle on T2 weighted images
- Nodular type
 - Focal intramuscular masses, usually at myotendinous junction
 - Have appearance described as "dark star" with central areas of low signal indicating fibrosis
- May be difficult to see on radiographs

Calcium Hydroxyapatite Deposition Disease

- Systemic disease of unknown etiology
- Periarticular or intra-articular deposition of calcium hydroxyapatite crystals
 - Along tendons, capsule, ligaments or bursae
 - Can erode into the bone
- Localized pain, swelling and tenderness
- Can resolve over a few months
- Shoulder is the most commonly affected region
 - Especially the supraspinatus tendon

- Radiographs
 - Lobular soft tissue calcifications (arrows)
 - MRI

٠

- Low signal on all sequences (arrows)
- In acute phase can result in significant muscle edema
 - May be mistaken for a neoplasm
- Correlation with radiographs or CT important to avoid misdiagnosis

Primary Soft Tissue Neoplasm

- Usually appears as a focal enhancing mass
- May be associated with
 - Peri-tumoral edema
 - Internal hemorrhage/necrosis
- Muscle edema may be seen with benign and malignant tumors

Post Radiation Therapy

- Causes vasculitis and tissue injury
- Edema throughout the radiation field
 - Uniform muscle edema
 - Geometric margins
 - Extends uninterrupted across muscle and subcutaneous fat
- Edema signal
 - Can increase over 12-18 months
 - Can persist for many years

Post Radiation Sarcoma

- Radiation induced sarcoma
 - can originate in irradiated bone or soft tissue
- Risk 0.05%
- Occurs after latency of around 14 years
- Can occur 3-4 years following radiation therapy
- Poor prognosis in comparison to primary sarcoma
- A-D: Sarcoma in patient with history of radiation treatment for prostate cancer

Diabetes Related Muscle Infarct

- Long standing, poorly controlled diabetes
- Abrupt severe thigh or calf pain
- Possible low grade fever
- Pathogenesis uncertain
 - microangiopathy has been suggested
- Muscle enlargement with
 - muscle edema (*)
 - fascial edema
- Diffuse heterogeneous muscle edema
- MRI
 - Increased signal on fluid sensitive sequences
 - Nonenhancing regions represent myonecrosis
- Ultrasound (US)
 - Heterogeneous hypoechoic muscle

Ruptured Popliteal Cyst

- Fluid in the synovial lined gastrocnemiussemimembranosus bursa
- Complications of popliteal cyst
 - Dissection
 - Rupture
 - Compression
 - Hematoma
 - Compartment syndrome
 - Acute calf pain
 - Swelling
- Neoplasm with hemorrhage may have similar appearance
 - Follow up imaging may help to confirm resolution/improvement

A-B: Ruptured popliteal cyst with hemorrhage dissecting between soleus and gastrocnemius muscles (ellipse). Associated muscle edema (*).

Summary

- There are many causes of muscle edema signal on MRI exams
- These include trauma, infectious and inflammatory processes, autoimmune disorders, neoplasms, denervation injuries and iatrogenic etiologies
- Important for radiologists to recognize distribution and patterns of muscle edema and to correlate with clinical history in order to make a correct diagnosis
- In some cases correlation with CT and radiographs may also help in making an accurate diagnosis
- Delayed or misdiagnosis may result in delayed treatment or unnecessary intervention

References

- May et al. Abnormal Signal Intensity in Skeletal Muscle at MR imaging: Patterns, Pearls, and Pitfalls.
 RadioGraphics(2000) 20: S295-S315
- McMahon et al. Muscle Edema. AJR 2010; 194: W284-W292
- Schulze et al. MRI Findings in Inflammatory Muscle Diseases and Their Noninflammatory Mimics. AJR 2009; 192: 1708-1716
- Baker et al. Diabetic Musculoskeletal Complications and Their Imaging Mimics. AJR 1994;163:155-161
- Kim et al. MR Imaging Mapping of Skeletal Muscle Denervation in Entrapment and Compressive Neuropathies. RadioGraphics 2011; 31: 319-332
- Flores et al. MR Imaging of Muscle Trauma: Anatomy, Biomechanics, Pathophysiology, and Imaging Appearance. RadioGraphics 2018; 38:124-148
- Agten et al. Hip Imaging in Athletes: Sports Imaging Series. Radiology 2016; 260: 351-369

Correspondence

S. Yadavalli, MD, PhD

Department of Radiology

Beaumont Health, 3601 W. 13 Mile Rd.

Royal Oak, MI 48073

Email: Sailaja.Yadavalli@beaumont.edu

#SSR18Poster 29